
Simulink® PLC Coder™

User’s Guide

R2011b

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Simulink® PLC Coder™ User’s Guide
© COPYRIGHT 2010–2011 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
March 2010 Online only New for Version 1.0 (Release 2010a)
September 2010 Online only Revised for Version 1.1 (Release 2010b)
April 2011 Online only Revised for Version 1.2 (Release 2011a)
September 2011 Online only Revised for Version 1.2.1 (Release 2011b)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Getting Started

1
Product Overview . 1-2
Introduction . 1-2
PLC Code Generation in the Development Process 1-3
Expected Users . 1-4
Glossary . 1-4
Expected Background . 1-4
Accessing Demos . 1-5

Related Products . 1-6
Requirements for the Simulink® PLC Coder Product 1-6
Supported Simulink and Stateflow Blocks 1-6
System Requirements . 1-7
Supported IDE Platforms . 1-7

Basic Workflow . 1-11

Preparing Your Model to Generate Structured Text
Code . 1-12
Configuring Simulink Models for Structured Text Code
Generation . 1-12

Ensuring System Compatibility for Structured Text Code
Generation . 1-17

Generating and Examining Structured Text Code 1-21
Generating Structured Text Code from the Model
Window . 1-21

Generating Structured Text Code with the MATLAB
Interface . 1-28

Generating Structured Text Code and Integrating with
Existing Siemens SIMATIC STEP 7 Projects 1-29

Automatically Importing Structured Text Code 1-31

iii

PLC IDEs That Qualify for Importing Code
Automatically . 1-31

Generating and Automatically Importing Structured Text
Code . 1-32

Troubleshooting Automatic Import Issues 1-33

Mapping Simulink Semantics to Structured
Text

2
How Simple Subsystem Code Maps to Function
Blocks . 2-2

How Reusable Subsystem Code Maps to Function
Blocks . 2-4

How Triggered Subsystem Code Maps to Function
Blocks . 2-6

How Stateflow Subsystem Code Maps to Function
Blocks . 2-8

How MATLAB® Coder Subsystem Code Maps to
Function Blocks . 2-10

How Alias Data Types Map in Generated Code 2-12

Generating Test Bench Code

3
Working with Generated Structured Text 3-2
How Test Bench Verification Works 3-2
Generated Files . 3-2
Integrating Generated Code into Custom Code 3-2

iv Contents

Generate and Manually Import Test Bench Code 3-4

Automatically Importing Structured Text Code 3-8
PLC IDEs that Qualify for Importing Code
Automatically . 3-8

Automatically Importing to KW-Software MULTIPROG 5.0
and Phoenix Contact PC WORX 6.0 IDEs 3-9

Generating, Automatically Importing, and Verifying
Structured Text . 3-10

Working with Tunable Parameters in the
Simulink® PLC Coder Environment

4
Configuring Tunable Parameters for Your Model 4-2
About Tunable Parameters in the Simulink® PLC Coder
Environment . 4-2

Workflow Overview . 4-2
Identifying Tunable Parameters . 4-3
Defining Tunable Parameters in the MATLAB
Workspace . 4-6

Configuring Parameters to Be Tunable 4-8
Tunable Parameters Considerations 4-13

Controlling Generated Code Partitions

5
Function Block Partitions . 5-2
About Function Block Partitions . 5-2
Example: One Function Block for Atomic Subsystems 5-2
Example: One Function Block for Virtual Subsystems . . . 5-3
Example: Multiple Function Blocks for Nonvirtual
Subsystems . 5-4

Controlling Generated Code Using Subsystem Block
Parameters . 5-5

v

IDE-Specific Considerations

6
Introduction . 6-2

Considerations for All Target IDEs 6-3

Rockwell Automation RSLogix Considerations 6-4
Add-On Instruction and Function Blocks 6-4
Double-Precision Data Types . 6-4
Unsigned Integer Data Types . 6-4
Unsigned Fixed-Point Data Types . 6-5
Enumerated Data Types . 6-5

Siemens SIMATIC STEP 7 Considerations 6-6
Double-Precision Floating-Point Data Types 6-6
int8 and Unsigned Integer Types . 6-6
Unsigned Fixed-Point Data Types . 6-6
Enumerated Data Types . 6-7

Limitations

7
Coder Limitations . 7-2
Current Limitations . 7-2
Fixed-Point Data Type Limitations 7-3
Permanent Limitations . 7-5

Block Restrictions . 7-6
Simulink Block Support Exceptions 7-6
Stateflow Chart Exceptions . 7-6
Reciprocal Sqrt Block . 7-7

vi Contents

Functions — Alphabetical List

8

Configuration Parameters for Simulink® PLC
Coder Models

9
PLC Coder: General . 9-2
PLC Coder: General Tab Overview 9-3
Target IDE . 9-4
Target IDE Path . 9-6
Code Output directory . 9-8
Generate testbench for subsystem . 9-9

PLC Coder: Comments . 9-10
Comments Overview . 9-11
Include comments . 9-11
Simulink block / Stateflow object comments 9-12
Show eliminated blocks . 9-13

PLC Coder: Symbols . 9-14
Symbols Overview . 9-15
Maximum identifier length . 9-16
Use the same reserved names as Simulation Target 9-17
Reserved names . 9-18

Index

vii

viii Contents

1

Getting Started

• “Product Overview” on page 1-2

• “Related Products” on page 1-6

• “Basic Workflow” on page 1-11

• “Preparing Your Model to Generate Structured Text Code” on page 1-12

• “Generating and Examining Structured Text Code” on page 1-21

• “Automatically Importing Structured Text Code” on page 1-31

1 Getting Started

Product Overview

In this section...

“Introduction” on page 1-2

“PLC Code Generation in the Development Process” on page 1-3

“Expected Users” on page 1-4

“Glossary” on page 1-4

“Expected Background” on page 1-4

“Accessing Demos” on page 1-5

Introduction
Simulink® PLC Coder™ generates hardware-independent IEC 61131-3
structured text from Simulink® models, Stateflow® charts, and MATLAB®

Coder™ functions. The structured text is generated in PLCopen and other
file formats supported by widely used integrated development environments
(IDEs). As a result, you can compile and deploy your application to numerous
programmable logic controller (PLC) and programmable automation
controller (PAC) devices.

Simulink PLC Coder generates test benches that help you verify the
structured text using PLC and PAC IDEs and simulation tools.

Key features:

• Automatic generation of IEC 61131-3 structured text

• Simulink support, including reusable subsystems, PID controller blocks,
and lookup tables

• Stateflow support, including graphical functions, truth tables, and state
machines

• MATLAB Coder support, including if-else statements, loop constructs,
and math operations

1-2

Product Overview

• Support for multiple data types, including Boolean, integer, enumerated,
and floating-point, as well as vectors, matrices, buses, and tunable
parameters

• IDE support, including B&R Automation Studio®, PLCopen, Rockwell
Automation® RSLogix™ 5000, Siemens® SIMATIC® STEP® 7, and Smart
Software Solutions CoDeSys

• Test-bench creation

PLC Code Generation in the Development Process
Simulink PLC Coder software lets you generate IEC-61131-3 compliant
structured text code from Simulink models. This software brings the
Model-Based Design approach into the domain of PLC and PAC development.
Using the coder, system architects and designers can spend more time
fine-tuning algorithms and models through rapid prototyping and
experimentation, and less time on coding PLCs.

Typically, you use a Simulink model to simulate a design for realization
in a PLC. Once satisfied that the model meets design requirements, run
the Simulink PLC Coder compatibility checker utility. This utility verifies
compliance of model semantics and blocks for PLC target IDE code generation
compatibility. Next, invoke the Simulink PLC Coder tool, using either the
command line or the graphical user interface. The coder generates structured
text code that implements the design embodied in the model.

Usually, you also generate a corresponding test bench. You can use the test
bench with PLC emulator tools to drive the generated structured text code
and evaluate its behavior.

The test bench feature increases confidence in the correctness of the generated
code and saves time spent on test bench implementation. The design and
test process are fully iterative. At any point, you can return to the original
model, modify it, and regenerate code.

At completion of the design and test phase of the project, you can easily export
the generated Structure Text code to your PLC development environment.
You can then deploy the code.

1-3

1 Getting Started

Expected Users
The Simulink PLC Coder product is a tool for control and algorithm design
and test engineers in the following applications:

• PLC manufacturing

• Machine manufacturing

• Systems integration

Glossary

Term Definition

PAC Programmable automation controller.

PLC Programmable logic controller.

IEC 61131-3 IEC standard that defines PLC coder languages, including the structured
text language for which the Simulink PLC Coder software generates code.

PLCopen Vendor- and product-independent organization that works with the
IEC 61131-3 standard. The Simulink PLC Coder product can generate
structured text using the PLCopen XML standard format. See
http://www.plcopen.org/pages/tc6_xml/xml_intro/index.htm for
details.

structured text High-level textual language defined by IEC-61131-3 standard for the
programming of PLCs.

function block Structured text language programming concept that allows the
encapsulation and reuse of algorithmic functionality.

Expected Background
You should be familiar with:

• MATLAB® and Simulink software and concepts

• PLCs

• Structured text language

1-4

http://www.plcopen.org/pages/tc6_xml/xml_intro/index.htm

Product Overview

If you want to download generated code to a PLC IDE, you should also be
familiar with your chosen PLC IDE platform. See “Supported IDE Platforms”
on page 1-7 for a list of these platforms.

Accessing Demos
The Simulink PLC Coder software provides demos in:

matlabroot\toolbox\plccoder\plccoderdemos

To see a list of available demos, in the MATLAB Command Window, type:

plccoderdemos

This command displays the Simulink PLC Coder demos page in the MATLAB
Help browser. The MATLAB Help browser allows you to access the
documentation and demo models for all the MathWorks® products that you
have installed. To access any of these demos, select the name on the demo
page. Some of the demos included with the product are:

Demo Description

Generating Structured
Text for a Simple
Simulink Subsystem

Demonstrates the code generated for a simple
subsystem consisting of basic Simulink blocks.

Generating Structured
Text for a Hierarchical
Simulink Subsystem

Demonstrates the code generated for a
hierarchical subsystem consisting of other
Simulink subsystems.

Generating Structured
Text for a Reusable
Simulink Subsystem

Demonstrates the code generated for a reusable
subsystem consisting of basic Simulink blocks.

Generating Structured
Text for a Stateflow Chart

Demonstrates the code generated for a
Stateflow Chart block.

Generating Structured
Text for a MATLAB Block

Demonstrates the code generated for a
MATLAB Function block implementing tank
valve control logic.

1-5

1 Getting Started

Related Products

In this section...

“Requirements for the Simulink® PLC Coder Product” on page 1-6

“Supported Simulink and Stateflow Blocks” on page 1-6

“System Requirements” on page 1-7

“Supported IDE Platforms” on page 1-7

Requirements for the Simulink PLC Coder Product
The Simulink PLC Coder product requires current versions of these products:

• MATLAB

• Simulink

The Stateflow product is recommended.

See the MathWorks Web site at Related Products for a list of related products.

Supported Simulink and Stateflow Blocks

To access a Simulink library of blocks that the Simulink PLC Coder software
supports, type plclib in the MATLAB Command Window. The coder can
generate structured text code for subsystems that contain these blocks. The
library window is displayed.

1-6

http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/simulink/
http://www.mathworks.com/products/sl-plc-coder/related.html

Related Products

This library contains two sublibraries, Simulink and Stateflow. Each
sublibrary contains the blocks that you can include in a Simulink PLC Coder
model.

See “Block Restrictions” on page 7-6 for restrictions on using these blocks.

System Requirements

Requirement Description

32-bit or 64-bit
operating system

Windows® platform supported by MathWorks

Supported IDE Platforms
The Simulink PLC Coder product supports the following IDE platforms:

• 3S-Smart Software Solutions CoDeSys Version 2.3 or 3.3

1-7

1 Getting Started

• B&R Automation Studio 3.0

• Beckhoff® TwinCAT® 2.11

• KW-Software MULTIPROG® 5.0

Note The Simulink PLC Coder software supports only the English version
of KW-Software MULTIPROG target IDE.

• Phoenix Contact® PC WORX™ 6.0

Note The Simulink PLC Coder software supports only the English version
of Phoenix Contact PC WORX target IDE.

• Rockwell Automation RSLogix 5000 Series Version 17 or 18

• Siemens SIMATIC STEP 7 Version 5.4

Note The Simulink PLC Coder software assumes that:

- English systems use English S7

- German systems use German S7

• Generic

• PLCopen XML

See the MathWorks Web site at Supported IDEs for a list of supported IDEs
and platforms.

3S-Smart Software Solutions CoDeSys Software
To get CoDeSys Version 2.3 or 3.3, see:

http://www.3s-software.com/index.shtml?en_download

1-8

http://www.mathworks.com/products/sl-plc-coder/supportedio.html
http://www.3s-software.com/index.shtml?en_download

Related Products

This download page requires you to be a registered user.

1 If you are not yet a registered user, create an account. It might take a few
days to receive a password for the account.

2 When you receive a password, use it to access the download page.

3 On the download page, select the CoDeSys software to download.

You do not need to download the CoDeSys SP RTE demo.

4 Follow CoDeSys download and installation instructions to install the
software.

B&R Automation Studio 3.0 Software
To get the B&R Automation Studio product, see:

http://www.br-automation.com/cps/rde/xchg/br-productcatalogue-
/hs.xsl/cookies_allowed.htm?caller=products_5309_ENG_HTML.htm/

Beckhoff TwinCAT 2.11
To get the Beckhoff TwinCAT 2.11 product, see:

http://www.beckhoff.com/english.asp?twincat/default.htm

KW-Software MULTIPROG 5.0
To get the KW-Software MULTIPROG 5.0 product, see:

http://www.kw-software.com/com/index1024.html

Phoenix Contact PC WORX Version 6.0
To get the Phoenix Contact PC WORX Version 6.0 product, see:

http://www.phoenixcontact.com/automation/32131_31906.htm

Rockwell Automation RSLogix 5000 Software
To get the Rockwell Automation RSLogix 5000 product, see:

1-9

http://www.br-automation.com/cps/rde/xchg/br-productcatalogue/hs.xsl/cookies_allowed.htm?caller=products_5309_ENG_HTML.htm
http://www.br-automation.com/cps/rde/xchg/br-productcatalogue/hs.xsl/cookies_allowed.htm?caller=products_5309_ENG_HTML.htm
http://www.beckhoff.com/english.asp?twincat/default.htm
http://www.kw-software.com/com/index1024.html
http://www.phoenixcontact.com/automation/32131_31906.htm

1 Getting Started

http://www.rockwellautomation.com/rockwellsoftware/design/-
rslogix5000/

Siemens SIMATIC STEP 7
To get the Siemens SIMATIC STEP 7 Version 5.4 product, see:

http://www.sea.siemens.com/us/Products/Automation/-
Engineering-Software/step-7-pro/Pages/step-7-pro.aspx.

1-10

http://www.rockwellautomation.com/rockwellsoftware/design/rslogix5000/
http://www.rockwellautomation.com/rockwellsoftware/design/rslogix5000/
http://www.sea.siemens.com/us/Products/Automation/Engineering-Software/step-7-pro/Pages/step-7-pro.aspx
http://www.sea.siemens.com/us/Products/Automation/Engineering-Software/step-7-pro/Pages/step-7-pro.aspx

Basic Workflow

Basic Workflow
The basic workflow of Simulink PLC Coder users includes:

1 Define and design a Simulink model from which you want to generate code.

2 Identify the model components for which you want to generate code for
downloading to a PLC.

3 Place the components in a Subsystem block.

4 Identify your target PLC IDE.

5 Configure the Subsystem block to be atomic.

6 Check that the model is compatible with the Simulink PLC Coder software.

7 Simulate your model.

8 Configure model parameters to generate code for your PLC IDE.

9 Examine the generated code.

10 Import code to your PLC IDE.

1-11

1 Getting Started

Preparing Your Model to Generate Structured Text Code

In this section...

“Configuring Simulink Models for Structured Text Code Generation” on
page 1-12

“Ensuring System Compatibility for Structured Text Code Generation”
on page 1-17

Configuring Simulink Models for Structured Text
Code Generation
This topic assumes that you have a model for which you want to generate and
import code to a PLC IDE. Before you use this model, perform the following
steps.

1 In the MATLAB Command Window, open your model. For example:

2 Configure the model to use the fixed-step discrete solver. To do this, select
Simulation > Configuration Parameters and in the Solver pane, set
Type to Fixed-step and Solver to discrete (no continuous states).

1-12

Preparing Your Model to Generate Structured Text Code

3 Save this model as plcdemo_simple_subsystem1.mdl.

4 Place the components for which you want to generate structured text code
in a subsystem. For example:

Optionally, rename In1 and Out1 to U and Y respectively. This operation
results in a subsystem like the following:

1-13

1 Getting Started

5 Save the subsystem.

6 In the top-level model, right-click the Subsystem block and select
Subsystem Parameters.

1-14

Preparing Your Model to Generate Structured Text Code

7 In the resulting block dialog box, select Treat as atomic unit.

1-15

1 Getting Started

8 Click OK.

9 Simulate your model.

10 Save your model. In later procedures, you can use either this model, or the
plcdemo_simple_subsystem.mdl model that comes with your software.

You are now ready to:

1-16

Preparing Your Model to Generate Structured Text Code

• Properly set up your subsystem to generate structured text code. See
“Ensuring System Compatibility for Structured Text Code Generation”
on page 1-17.

• Generate structured text code for your IDE. See “Generating and
Examining Structured Text Code” on page 1-21.

Ensuring System Compatibility for Structured Text
Code Generation
This topic assumes that you have a model that you have configured to work
with the Simulink PLC Coder software.

1 In your model, navigate to the subsystem for which you want to generate
code.

2 Right-click that Subsystem block and select PLC Code
Generation > Check Subsystem Compatibility.

1-17

1 Getting Started

The coder verifies that your model satisfies the Simulink PLC Coder
criteria and displays an information window when done.

If the subsystem is not atomic, right-clicking the Subsystem block and
selecting PLC Code Generation prompts you to select Enable “Treat as
atomic unit” to generate code.

1-18

Preparing Your Model to Generate Structured Text Code

This command opens the block parameter dialog box so that you can select
the Treat as atomic unit check box.

1-19

1 Getting Started

You are now ready to generate structured text code for your IDE. See
“Generating and Examining Structured Text Code” on page 1-21.

1-20

Generating and Examining Structured Text Code

Generating and Examining Structured Text Code

In this section...

“Generating Structured Text Code from the Model Window” on page 1-21

“Generating Structured Text Code with the MATLAB Interface” on page
1-28

“Generating Structured Text Code and Integrating with Existing Siemens
SIMATIC STEP 7 Projects” on page 1-29

Generating Structured Text Code from the Model
Window
This topic assumes that you have set up your environment and Simulink
model to use the Simulink PLC Coder software to generate structured text
code. If you have not yet done so, see “Preparing Your Model to Generate
Structured Text Code” on page 1-12.

1 If you do not have the plcdemo_simple_subsystemmodel open, open it now.

2 Right-click the Subsystem block and select PLC Code
Generation > Options.

1-21

1 Getting Started

The Configuration Parameters dialog box is displayed.

1-22

Generating and Examining Structured Text Code

3 In PLC Code Generation > General options > Target IDE, select a
target IDE. For example, select CoDeSys 2.3.

4 Click Apply.

5 Click the Generate code button.

This button:

• Generates structured text code (same as the PLC Code
Generation > Generate Code for Subsystem option)

• Stores generated code in model_name.exp (for example,
plcdemo_simple_subsystem.exp)

When code generation is complete, an information window is displayed.

1-23

1 Getting Started

This window has links that you can click to open the associated files.

The Simulink PLC Coder software generates structured text code and stores
it according to the target IDE platform. These platform-specific paths are
default locations for the generated code. To customize generated file names,
see “Specifying Custom Names for Generated Files” on page 1-27.

Platform Generated Files

3S-Smart
Software
Solutions
CoDeSys IDE

current_folder\plcsrc\model_name.exp— Structured text file appropriate
for downloading to the target IDE.

B&R
Automation
Studio IDE

The following files in current_folder\plcsrc\model_name—Files appropriate
for downloading to the target IDE:

• Package.pkg— (If test bench is generated) Top-level package file for function
blocks library and test bench main program in XML format.

1-24

Generating and Examining Structured Text Code

Platform Generated Files

In the subsystem folder:

• IEC.lby— Function blocks library definition file in XML format.

• subsystem_block_name.fun— Text file. Function block interface definitions
file. The coder generates one file per project.

• subsystem_block_name.st— Text file. Structured text function body files.
The coder generates one file per function block in the generated code.

• subsystem_block_name.typ — Text file. Structure and enumerated type
definitions file. The coder generates one file per project.

• subsystem_block_name.var — Text file. Global constant definitions file.
The coder generates one file per project.

• TestBench.st— (If test bench is generated) Text file. Structured text file for
generated test bench code.

In the main folder (if test bench is generated):

• IEC.prg— Test bench main program definition file in XML format.

• mainInit.st— Text file. Test bench init program file in structured text.

• mainCyclic.st— Text file. Test bench cyclic program file in structured text.

• mainExit.st— Text file. Test bench exit program file in structured text.

• main.typ— Text file. Main program type definitions file in structured text.

• main.var— Text file. Main program variable definitions file in structured
text.

Beckhoff
TwinCAT 2.11

current_folder\plcsrc\model_name.exp— Structured text file appropriate
for downloading to the target IDE.

KW-Software
MULTIPROG
5.0

current_folder\plcsrc\model_name.xml — Structured text file, in XML
format, appropriate for downloading to the target IDE.

Phoenix
Contact PC
WORX 6.0

current_folder\plcsrc\model_name.xml — Structured text file, in XML
format, appropriate for downloading to the target IDE.

1-25

1 Getting Started

Platform Generated Files

Rockwell
Automation
RSLogix 5000
IDE

current_folder\plcsrc\model_name.L5X . — Structured text file appropriate
for downloading to the target IDE. This file is in XML format and contains the
generated structured text code for your model.

Siemens
SIMATIC
STEP 7 IDE

current_folder\plcsrc\model_name.scl— Structured text file appropriate
for downloading to the target IDE.

current_folder\plcsrc\model_name.asc (If test bench is generated.) — Text
file. Structured text file and symbol table for generated test bench code.

Generic current_folder\plcsrc\model_name.st— Pure structured text file. If your
target IDE is not available for the Simulink PLC Coder product, consider
generating and downloading a generic structured text file.

PLCopen XML current_folder\plcsrc\model_name.xml — Structured text file formatted
using the PLCopen XML standard. If your target IDE is not available for the
Simulink PLC Coder product, but uses a format like this standard, consider
generating and downloading a PLCopen XML structured text file.

The example in this topic illustrates generated code for the CoDeSys
Version 2.3 PLC IDE. Generated code for other platforms, such as Rockwell
Automation RSLogix 5000, is in XML or other format and looks different.

1-26

Generating and Examining Structured Text Code

After generating structured text code, examine. See Chapter 2, “Mapping
Simulink Semantics to Structured Text” for a description of how the generated
code for the Simulink components map to structured text components.

If you are confident that the generated structured text is good, optionally
change your workflow to automatically generate and import code to the target
IDE. For more information, see “Automatically Importing Structured Text
Code” on page 1-31.

Specifying Custom Names for Generated Files
To specify a different name for the generated files, set the Function name
options parameter in the Subsystem block:

1-27

1 Getting Started

1 Right-click the Subsystem block for which you want to generate code and
select Subsystem Parameters.

2 In the Main tab, select the Treat as atomic unit check box.

3 Click the Code Generation tab.

4 From the Function Packaging parameter list, select either Function or
Reusable Function.

These options enable the Function name options and File name
options parameters.

5 Select the option that you want to use for generating the file name:

Function name options Generated File Name

Auto Default. Uses the model name, as
listed in “Preparing Your Model
to Generate Structured Text
Code” on page 1-12, for example,
plcdemo_simple_subsystem.

Use subsystem name Uses the subsystem name, for
example, SimpleSubsystem.

User specified Uses the custom name that
you specify in the Function
name parameter, for example,
SimpleSubsystem.

Generating Structured Text Code with the MATLAB
Interface
You can generate structured text code for a subsystem from the MATLAB
Command Window with the plcgeneratecode function. The function
assumes that you have configured the parameters for the model, or that you
want to use the default settings. For example, to open the Configuration
Parameters dialog box for the subsystem, type:

plcopenconfigset('plcdemo_simple_subsystem/Simple_Subsystem')

1-28

Generating and Examining Structured Text Code

Configure the subsystem as described in “Generating Structured Text Code
from the Model Window” on page 1-21.

To generate the code for the subsystem, type:

generatedfiles = plcgeneratecode('plcdemo_simple_subsystem/Simple_Subsystem')

Generating Structured Text Code and Integrating
with Existing Siemens SIMATIC STEP 7 Projects
This topic describes a workflow to integrate generated code into an existing
Siemens SIMATIC STEP 7 project.

This topic assumes that:

• You have generated code for the Siemens SIMATIC STEP 7 target IDE.
If you have not yet done so, see “Generating Structured Text Code from
the Model Window” on page 1-21.

• You have a Siemens SIMATIC STEP 7 project into which you want to
integrate the generated code.

1 In the Siemens SIMATIC STEP 7 project, right-click Sources and select
Insert New Object > External Source.

A browser window is displayed.

2 In the browser window, navigate to the folder that contains the Simulink
PLC Coder generated code you want to integrate.

3 In this folder, select model_name.scl, then click OK.

A new entry named model_name appears in the Sources folder.

4 In the Sources folder, double-click model_name.

The generated code is listed in the SCL editor window.

5 In the SCL editor window, select Options > Customize.

1-29

1 Getting Started

The customize window is displayed.

6 In the customize window, select Create block numbers automatically.

7 Click OK.

This action enables the software to generate automatically the symbol
addresses for Subsystem blocks.

8 In the SCL editor window, compile the model_name.scl file for the
Subsystem block.

The new Function Block is now integrated and available for use with the
existing Siemens SIMATIC STEP 7 project.

1-30

Automatically Importing Structured Text Code

Automatically Importing Structured Text Code

In this section...

“PLC IDEs That Qualify for Importing Code Automatically” on page 1-31

“Generating and Automatically Importing Structured Text Code” on page
1-32

“Troubleshooting Automatic Import Issues” on page 1-33

PLC IDEs That Qualify for Importing Code
Automatically
If you are confident that your model produces structured text that does not
require visual examination, you can generate and automatically import
structured text code to one of the following target PLC IDEs:

• CoDeSys Version 2.3

• KW-Software MULTIPROG Version 5.0

• Phoenix Contact PC WORX Version 6.0

• Rockwell Automation RSLogix 5000 Version 17 or 18

• Siemens SIMATIC STEP 7 Version 5.4 only for the following versions:

- Siemens SIMATIC Manager: Version V5.4+SP5+HF1, Revision K5.4.5.1

- S7-SCL: Version V5.3+SP5, Revision K5.3.5.0

- S7-PLCSIM: Version V5.4+SP3, Revision K5.4.3.0

This topic describes how to work with the default CoDeSys Version 2.3 IDE.
The procedure should work without additional changes for the other supported
PLC IDEs, with the exception of the KW-Software MULTIPROG 5.0 and
Phoenix Contact PC WORX 6.0 IDE. For notes on how to automatically
import structured text code to these IDEs, see “Automatically Importing to
KW-Software MULTIPROG 5.0 and Phoenix Contact PC WORX 6.0 IDEs”
on page 3-9.

1-31

1 Getting Started

Generating and Automatically Importing Structured
Text Code
You can generate and automatically import structured text code. Before you
start:

• In the target IDE, save any current project.

• Close all open projects.

• Close the target IDE and all target IDE-related windows.

Note While the automatic import process is in progress, do not touch your
mouse or keyboard. Doing so might disrupt the automatic import process.
You can resume normal operations when the process completes.

The following procedure assumes that you have installed your target PLC
IDE in a default location and uses the CoDeSys V2.3 IDE. If you installed the
target PLC IDE in a nondefault location, open the Configuration Parameters
dialog box. In the PLC Coder node, set the Target IDE Path parameter to
the installation folder of your PLC IDE. See “Target IDE Path” on page 9-6
for more details.

1 If it is not already started, start the MATLAB Command Window.

2 Open the plcdemo_simple_subsystem model.

3 Right-click the Subsystem block and select PLC Code
Generation > Generate and Import Code for Subsystem.

Note When automatically importing code, the software creates and
downloads a test bench regardless of the check box setting PLC Code
Generation > Generate testbench for subsystem in the Configuration
Parameters dialog box.

The software then:

a Generates the code and test bench.

1-32

Automatically Importing Structured Text Code

b Starts the target IDE interface.

c Creates a new project.

d Imports the generated code and test bench to the target IDE.

If you want to generate, import, and run the structured text code, see
“Automatically Importing Structured Text Code” on page 3-8.

Troubleshooting Automatic Import Issues
This topic describes guidelines, hints, and tips for questions or issues you
might have while using the automatic import capability of the Simulink PLC
Coder product.

Supported Target IDEs
The Simulink PLC Coder software supports only the following versions of
target IDEs for automatic import and verification:

• 3S-Smart Software Solutions CoDeSys Version 2.3

• KW-Software MULTIPROG 5.0 (English)

• Phoenix Contact PC WORX 6.0 (English)

• Rockwell Automation RSLogix 5000 Series Version 17 or 18 (English)

• Siemens SIMATIC STEP 7 Version 5.4 (English and German)

Unsupported Target IDEs
The following target IDEs currently do not support automatic import. For
these target IDEs, the automatic import menu items (Generate and Import
Code for Subsystem and Generate, Import, and Verify Code for
Subsystem) are disabled.

• 3S-Smart Software Solutions CoDeSys Version 3.3

• B&R Automation Studio IDE

• Beckhoff TwinCAT 2.11

• Generic

1-33

1 Getting Started

• PLCopen

Possible Automatic Import Issues
When the Simulink PLC Coder software fails to finish automatically
importing for the target IDE, it reports an issue in a message dialog box. To
remedy issue, try the following actions:

• Check that the coder supports the target IDE version and language setting
combination.

• Check that you have correctly specified the target IDE path in the
subsystem Configuration Parameters dialog box.

• Close any currently open projects in the target IDE, close the target IDE
completely, and try again.

• Some target IDEs can have issues supporting the large data sets the coder
test bench generates. In these cases, try to shorten the simulation cycles to
reduce the data set size, then try the automatic import again.

• Other applications can interfere with automatic importing to a target
IDE. Try to close other unrelated applications on the system and try the
automatic import again.

1-34

2

Mapping Simulink
Semantics to Structured
Text

When you examine generated code, you evaluate how well the Simulink PLC
Coder software has generated code from your model. The following topics
describe how the coder maps Simulink subsystem semantics to function block
semantics in structured text. As examples, the topics describe the mapping
in the context of the different subsystem types that Simulink supports. The
examples assume that you have already generated code (see “Generating
Structured Text Code from the Model Window” on page 1-21). These topics
use code generated with CoDeSys Version 2.3. All demos are located in the
matlabroot\toolbox\plccoder\plccoderdemos folder.

• “How Simple Subsystem Code Maps to Function Blocks” on page 2-2

• “How Reusable Subsystem Code Maps to Function Blocks” on page 2-4

• “How Triggered Subsystem Code Maps to Function Blocks” on page 2-6

• “How Stateflow Subsystem Code Maps to Function Blocks” on page 2-8

• “How MATLAB® Coder Subsystem Code Maps to Function Blocks” on page
2-10

• “How Alias Data Types Map in Generated Code” on page 2-12

2 Mapping Simulink® Semantics to Structured Text

How Simple Subsystem Code Maps to Function Blocks
This topic assumes that you have generated structured text code from a
Simulink model. If you have not yet done so, see “Generating Structured Text
Code from the Model Window” on page 1-21.

The example in this topic shows generated code for the CoDeSys Version 2.3
IDE. Generated code for other IDE platforms looks different.

1 If you do not have the plcdemo_simple_subsystem.exp file open, open it
in the MATLAB editor. In the folder that contains the file, type:

edit plcdemo_simple_subsystem.exp

A file like the following is displayed.

The following figure illustrates the mapping of the generated code to
structured text components for a simple Simulink subsystem. The Simulink
subsystem corresponds to the structured text function block, Subsystem.

2-2

How Simple Subsystem Code Maps to Function Blocks

��������	�
���	��
	
��������
�
���
�
����

��������

����������

������

��������

���������
	��
��	������

��������������
�����
���
��

�������
��	�
���	�

��������
��

�����������
���
�

2 Inspect this code as you ordinarily do for PLC code. Check the generated
code.

2-3

2 Mapping Simulink® Semantics to Structured Text

How Reusable Subsystem Code Maps to Function Blocks
This topic assumes that you have generated structured text code from a
Simulink model. If you have not yet done so, see “Generating Structured Text
Code from the Model Window” on page 1-21.

The example in this topic shows generated code for the CoDeSys Version 2.3
IDE. Generated code for other IDE platforms looks different.

1 Open the plcdemo_reusable_subsystem model.

2 Right-click the Subsystem block and select PLC Coder > Generate Code
for Subsystem.

The Simulink PLC Coder software generates structured text code and
places it in current_folder/plcsrc/plcdemo_reusable_subsystem.exp.

3 If you do not have the plcdemo_reusable_subsystem.exp file open, open it
in the MATLAB editor.

The following figure illustrates the mapping of the generated code to
structured text components for a reusable Simulink subsystem . This
graphic contains a copy of the hierarchical subsystem, ReusableSubsystem.
This subsystem contains two identical subsystems, S1 and S2. This
configuration enables code reuse between the two instances (look for the
ReusableSubsystem string in the code).

2-4

How Reusable Subsystem Code Maps to Function Blocks

�����������	������

������������
����
���������������

��������
�����
� !"#$�%"&'(%#)

4 Examine the generated structured text code. The code defines
FUNCTION_BLOCK ReusableSubsystem_S1 once.

Look for two instance variables that correspond to the two instances
declared inside the parent FUNCTION_BLOCK ReusableSubsystem
(_instance_ReusableSubsystem_S1_1: ReusableSubsystem_S1 and
_instance_ReusableSubsystem_S1_0: ReusableSubsystem_S1). The
code invokes these two instances separately by passing in different inputs.
The code invokes the outputs per the Simulink execution semantics.

2-5

2 Mapping Simulink® Semantics to Structured Text

How Triggered Subsystem Code Maps to Function Blocks
This topic assumes that you have generated structured text code from a
Simulink model. If you have not yet done so, see “Generating Structured Text
Code from the Model Window” on page 1-21.

The example in this topic shows generated code for the CoDeSys Version 2.3
PLC IDE. Generated code for other IDE platforms looks different.

1 Open the plcdemo_cruise_control model.

2 Right-click the Controller subsystem block and select PLC
Coder > Generate Code for Subsystem.

The Simulink PLC Coder software generates structured text code and
places it in current_folder/plcsrc/plcdemo_cruise_control.exp.

3 If you do not have the plcdemo_cruise_control.exp file open, open it in
the MATLAB editor.

The following figure illustrates the mapping of the generated code to
structured text components for a triggered Simulink subsystem . The
first part of the figure shows the Controller subsystem and the triggered
Stateflow chart that it contains. The second part of the figure shows
excerpts of the generated code. Notice the zero-crossing functions that
implement the triggered subsystem semantics.

��������
 $	�**�	����������
+�#��	�

2-6

How Triggered Subsystem Code Maps to Function Blocks

,���	������
��

$	�**�	�����������
���
������

2-7

2 Mapping Simulink® Semantics to Structured Text

How Stateflow Subsystem Code Maps to Function Blocks
This topic assumes that you have generated structured text code from a
Simulink model. If you have not yet done so, see “Generating Structured Text
Code from the Model Window” on page 1-21.

The example in this topic shows generated code for the CoDeSys Version 2.3
PLC IDE. Generated code for other IDE platforms looks different.

1 Open the plcdemo_stateflow_controller model.

2 Right-click the ControlModule chart and select PLC Coder > Generate
Code for Subsystem.

The Simulink PLC Coder software generates structured text code and places
it in current_folder/plcsrc/plcdemo_stateflow_controller.exp.

3 If you do not have the plcdemo_stateflow_controller.exp file open,
open it in the MATLAB editor.

The following figure illustrates the mapping of the generated code to
structured text components for a Simulink Subsystem block that contains a
Stateflow chart.

2-8

How Stateflow® Subsystem Code Maps to Function Blocks

���������
����
	��������
+����	�

4 Examine the generated structured text code.

The Simulink PLC Coder software aggressively inlines the generated code
for the Stateflow chart. The coder performs this inlining because different
functions from Stateflow charts share some global state data. However,
function blocks in structured text code do not share state data. As a result,
the coder software cannot map these functions onto separate function blocks.
Instead, it must inline these functions.

2-9

2 Mapping Simulink® Semantics to Structured Text

How MATLAB Coder Subsystem Code Maps to Function
Blocks

This topic assumes that you have generated structured text code from a
Simulink model. If you have not yet done so, see “Generating Structured Text
Code from the Model Window” on page 1-21.

The example in this topic shows generated code for the CoDeSys Version 2.3
IDE. Generated code for other IDE platforms looks different.

1 Open the plcdemo_eml_tankcontrol model.

2 Right-click the TankControl block and select PLC Code
Generation > Generate Code for Subsystem.

The Simulink PLC Coder software generates structured text code and
places it in current_folder/plcsrc/plcdemo_eml_tankcontrol.exp.

3 If you do not have the plcdemo_eml_tankcontrol.exp file open, open it in
the MATLAB editor.

The following figure illustrates the mapping of the generated code to
structured text components for a Simulink Subsystem block that contains a
MATLAB Function block. The coder tries to perform inline optimization on
the generated code for MATLAB subfunctions. If the coder determines that
it is more efficient to leave the subfunction as is, it places the generated
code in a structured text construct called FUNCTION.

4 Examine the generated structured text code.

2-10

How MATLAB® Coder™ Subsystem Code Maps to Function Blocks

,���	������
��
�
	�-�$(�'
���������
��

-�$(�'��
��

2-11

2 Mapping Simulink® Semantics to Structured Text

How Alias Data Types Map in Generated Code
The coder maps alias data types to the base data type in the generated code.

2-12

3

Generating Test Bench
Code

• “Working with Generated Structured Text” on page 3-2

• “Generate and Manually Import Test Bench Code” on page 3-4

• “Automatically Importing Structured Text Code” on page 3-8

3 Generating Test Bench Code

Working with Generated Structured Text

In this section...

“How Test Bench Verification Works” on page 3-2

“Generated Files” on page 3-2

“Integrating Generated Code into Custom Code” on page 3-2

How Test Bench Verification Works
The Simulink PLC Coder software simulates your model and automatically
captures the input and output signals for the subsystem that contains your
algorithm. This set of input and output signal data is the test bench data. The
coder also automatically generates a test bench (test harness) using the text
bench data. The test bench runs the generated code to verify that the output
is functionally and numerically equivalent to the output from the execution
of a Simulink model. To perform this verification, import the generated
structured text and the test bench data into your target IDE.

You can import test bench code:

• Manually, as described in “Generate and Manually Import Test Bench
Code” on page 3-4.

• Automatically, including running the test bench, as described in
“Automatically Importing Structured Text Code” on page 3-8

Generated Files
Depending on the target IDE platform, the Simulink PLC Coder software
generates code into one or more files. See “Generating Structured Text Code
from the Model Window” on page 1-21 for list of the target IDE platforms and
the possible generated files.

Integrating Generated Code into Custom Code
For the top-level subsystem that has internal state, the generated
FUNCTION_BLOCK code has ssMethodType. ssMethodType is a special
input argument that the coder adds to the input variables section of the
FUNCTION_BLOCK section during code generation. ssMethodType enables you

3-2

Working with Generated Structured Text

to execute code for Simulink Subsystem block methods such as initialization
and computation steps. The generated code executes the associated CASE
statement based on the value passed in for this argument.

To use ssMethodType with a FUNCTION_BLOCK for your model, in the generated
code, the top-level subsystem function block prototype has one of the following
formats:

Has Internal
State

ssMethodType Contains...

Yes The generated function block for the block will have an
extra first parameter ssMethodType of integer type. This
extra parameter is in addition to the function block I/O
parameters mapped from Simulink block I/O ports. To use
the function block, first initialize the block by calling the
function block with ssMethodType set to integer constant
SS_INITIALIZE. If the IDE does not support symbolic
constants, set ssMethodType to integer value 0. For
each follow-up invocation, call the function block with
ssMethodType set to constant SS_STEP. If the IDE does not
support symbolic constants, set ssMethodType to integer
value 1. These settings cause the function block to initialize
or compute and return output for each time step.

No The function block interface only has parameters mapped
from Simulink block I/O ports. There is no ssMethodType
parameter. To use the function block in this case, call the
function block with proper I/O arguments.

For non top-level subsystems, either with or without internal state, the
function block interface has the ssMethodType parameter. The generated code
might have other ssMethodType constants to implement Simulink semantics.

3-3

3 Generating Test Bench Code

Generate and Manually Import Test Bench Code
This example shows how to generate test bench code. It uses the CoDeSys
V2.3 IDE as an example target IDE.

This example assumes that you have an appropriately configured model from
which to generate structured text. If you have not yet done this procedure,
see “Preparing Your Model to Generate Structured Text Code” on page 1-12.
All demos are located in the matlabroot\toolbox\plccoder\plccoderdemos
folder.

1 If you do not have the plcdemo_simple_subsystemmodel open, open it now.

2 Check that you have connected the inputs and outputs of the subsystem
for which you want to generate the test bench. You can import this test
bench with the generated code to the target IDE to verify that the output is
functionally and numerically equivalent to the output from the execution
of a Simulink model. For example:

3-4

Generate and Manually Import Test Bench Code

3 Right-click the Subsystem block and select PLC Code
Generation > Options.

The Configuration Parameters dialog box is displayed.

4 In PLC Code Generation > General options > Target IDE, select your
target IDE, for example, CoDeSys 2.3.

5 Select the Generate testbench for subsystem check box.

6 Click Apply.

7 Click the Generate code button.

This button:

3-5

3 Generating Test Bench Code

• Generates structured text code (same as the PLC Code
Generation > Generate Code for Subsystem option)

• Generates the test bench for code through Simulink simulation

• Combines the generated code and test bench into model_name.exp (for
example, plcdemo_simple_subsystem.exp)

When the code generation is complete, an information window is
displayed.

8 Click OK.

The Simulink PLC Coder software generates structured text code and
writes it to current_folder/plcsrc/plcdemo_simple_subsystem.exp.
Depending on the target IDE, the coder might generate additional
supporting files.

9 Close the model.

3-6

Generate and Manually Import Test Bench Code

bdclose(sys)

See the user manual for your target IDE for information on how to import
generated code into the target IDE.

3-7

3 Generating Test Bench Code

Automatically Importing Structured Text Code

In this section...

“PLC IDEs that Qualify for Importing Code Automatically” on page 3-8

“Automatically Importing to KW-Software MULTIPROG 5.0 and Phoenix
Contact PC WORX 6.0 IDEs” on page 3-9

“Generating, Automatically Importing, and Verifying Structured Text”
on page 3-10

PLC IDEs that Qualify for Importing Code
Automatically
This topic assumes that you have read “Automatically Importing Structured
Text Code” on page 1-31. If you have not yet done so, read that topic first. It
also assumes that you are confident that your model produces structured text
that does not require visual examination.

You can generate, automatically import, and optionally verify structured text
code for one of the following target PLC IDEs:

• 3S-Smart Software Solutions CoDeSys Version 2.3

• KW-Software MULTIPROG 5.0

• Phoenix Contact PC WORX Version 6.0

• Rockwell Automation RSLogix 5000

• Siemens SIMATIC STEP 7 Version 5.4 only for the following versions:

- Siemens SIMATIC Manager: Version V5.4+SP5+HF1, Revision K5.4.5.1

- S7-SCL: Version V5.3+SP5, Revision K5.3.5.0

- S7-PLCSIM: Version V5.4+SP3, Revision K5.4.3.0

If you do not want to run and verify the generated code and want only to
import it, see “Generating and Automatically Importing Structured Text
Code” on page 1-32.

3-8

Automatically Importing Structured Text Code

Automatically Importing to KW-Software MULTIPROG
5.0 and Phoenix Contact PC WORX 6.0 IDEs
Before you can automatically import generated code to this IDE, create an
Empty template. This topic assumes that you have already set your target IDE
to KW-Software MULTIPROG 5.0 or Phoenix Contact PC WORX 6.0.

1 Start the KW-Software MULTIPROG 5.0 or Phoenix Contact PC WORX
6.0 IDE.

2 Select File > Delete Template and search for and delete any template
named Empty. Click OK when done.

3 Select File > New Project, select Project Wizard, then click OK.

The Project Wizard starts.

a In the Project Name field, type Empty,

b In the Project Path field, type or select a path to which you have write
privileges.

c Click Next.

d In the remaining wizard dialog boxes, click Next to leave the default
selections. At the end of the wizard, click Finish.

The IDE updates with the new Empty project tree.

4 In the project, delete everything under the following nodes:

• Logical POUs

• Physical Hardware

5 Check that the project tree has only top-level nodes for Libraries, Data
Types, Logical POUs, and Physical Hardware. There should be no
subtree nodes.

6 In the IDE, select File > Save As Template.

7 In Template Name, type Empty.

8 Click OK.

3-9

3 Generating Test Bench Code

9 Close the IDE interface.

When you are ready, open your model, right-click the Subsystem block, and
select one of the following:

• PLC Code Generation > Generate and Import Code for Subsystem

• PLC Code Generation > Generate, Import, and Verify Code for
Subsystem

The coder:

1 Generates the code and test bench.

2 Starts the IDE.

3 Creates a new, empty project using your Empty template.

4 Imports the generated code and test bench in XML file to the IDE.

5 If you selected PLC Code Generation > Generate, Import, and Verify
Code for Subsystem, the IDE also runs the generated code to verify it.

Generating, Automatically Importing, and Verifying
Structured Text
You can generate, automatically import, and run and verify structured text
code. If you want only to generate and automatically import structured text
code, see “Automatically Importing Structured Text Code” on page 1-31
instead.

The following procedure assumes that you have installed your target PLC
IDE in a default location. If you installed the target PLC IDE in a nondefault
location, open the Configuration Parameters dialog box. In the PLC Coder
node, set the Target IDE Path parameter to the installation folder of your
PLC IDE. See “Target IDE Path” on page 9-6 for more details.

3-10

Automatically Importing Structured Text Code

Note While the automatic import and verification process is in progress, do
not touch your mouse or keyboard. Doing so might disrupt the automatic
import or verification process. You can resume normal operations when the
process completes.

If you are working with the KW-Software MULTIPROG 5.0 or Phoenix
Contact PC WORX 6.0 IDE, see “Automatically Importing to KW-Software
MULTIPROG 5.0 and Phoenix Contact PC WORX 6.0 IDEs” on page 3-9.

1 If you do not have the plcdemo_simple_subsystemmodel open, open it now.

2 Right-click the Subsystem block and select PLC Code
Generation > Generate, Import, and Verify Code for Subsystem.

The coder then:

a Generates the code and test bench.

b Starts the target IDE.

c Creates a new project.

d Imports the generated code and test bench to the new project in the
target IDE.

e On the target IDE, runs the generated code to verify it.

3-11

3 Generating Test Bench Code

3-12

4

Working with Tunable
Parameters in the Simulink
PLC Coder Environment

4 Working with Tunable Parameters in the Simulink® PLC Coder™ Environment

Configuring Tunable Parameters for Your Model

In this section...

“About Tunable Parameters in the Simulink® PLC Coder Environment”
on page 4-2

“Workflow Overview” on page 4-2

“Identifying Tunable Parameters” on page 4-3

“Defining Tunable Parameters in the MATLAB Workspace” on page 4-6

“Configuring Parameters to Be Tunable” on page 4-8

“Tunable Parameters Considerations” on page 4-13

About Tunable Parameters in the Simulink PLC Coder
Environment
Block parameters can be either tunable or nontunable. A tunable parameter
is a parameter that you can change while the simulation is running. The
Simulink PLC Coder software allows you to tune parameters:

• From the MATLAB workspace, while the model simulation is running

• In the IDE, while the generated code is running

Workflow Overview
This topic describes how to configure your model to enable tunable parameters.
By default, Simulink PLC Coder parameters are inlined and not tunable.

The general workflow for configuring a model to enable tunable parameters is:

1 Identify the model parameters you want to be tunable.

2 Define these parameters in the MATLAB workspace.

3 Configure tunable parameters in the Configuration
Parameters > Optimization > Signals and Parameters >
Model Parameter Configuration dialog box.

4-2

Configuring Tunable Parameters for Your Model

Identifying Tunable Parameters
This topic creates the model my_plcdemo_tunable_params to show
how to configure tunable parameters. This model is the same as the
plcdemo_tunable_params model. The difference is that the demo model
already has the tunable parameters configured, while this topic guides you in
configuring the tunable parameters.

1 In the MATLAB Command Window, create a model to look like the
following:

2 Select the Sum, Gain, and Unit Delay blocks and create an atomic
subsystem with inputs U, U1, and U2 and outputs Y, Y1, and Y2. Rename
the Subsystem block as SimpleSubystem. When you are finished, the top
model and atomic subsystem model should look like the following:

4-3

4 Working with Tunable Parameters in the Simulink® PLC Coder™ Environment

3 Save this subsystem as my_plcdemo_tunable_params.mdl.

4 Double-click SimpleSubsystem.

4-4

Configuring Tunable Parameters for Your Model

5 Note the three Gain blocks that have the constants that you want to make
tunable: K1, K2, and K3.

Next, define these parameters in the MATLAB workspace. See “Defining
Tunable Parameters in the MATLAB Workspace” on page 4-6.

4-5

4 Working with Tunable Parameters in the Simulink® PLC Coder™ Environment

Defining Tunable Parameters in the MATLAB
Workspace
This topic describes how to define tunable parameters in the MATLAB
workspace using the Simulink Model Properties dialog box. Defining tunable
parameters in this way enables the model to automatically define parameters
each time you open the model.

It assumes that you created the my_plcdemo_tunable_params model or
opened plcdemo_tunable_params and identified the parameters for tuning. If
you have not yet done so, see “Identifying Tunable Parameters” on page 4-3.

1 In the my_plcdemo_tunable_params model, select File > Model
Properties.

The Model Properties dialog box is displayed.

2 In the Callbacks pane, select PreLoadFcn.

3 In the Model pre-load function pane, enter the three constants K1, K2,
and K3. Assign initial values to them. For example:

K1 = 0.1;
K2 = 0.2;
K3 = 0.3;

4-6

Configuring Tunable Parameters for Your Model

4 Click Apply.

5 In the Callbacks pane, select CloseFcn.

6 In the Model close function pane, enter the clear command to clear
these constants. For example:

clear K1 K2 K3;

4-7

4 Working with Tunable Parameters in the Simulink® PLC Coder™ Environment

This command clears these constants from the MATLAB workspace when
you close the model.

7 Click Apply, then OK.

Your next task is to configure these parameters to be tunable. See
“Configuring Parameters to Be Tunable” on page 4-8.

Configuring Parameters to Be Tunable
This topic describes how to configure parameters to be tunable using the
Simulink Configuration Parameters dialog box.

It assumes that you created the my_plcdemo_tunable_params model or
opened plcdemo_tunable_params and defined the parameters for tuning. If

4-8

Configuring Tunable Parameters for Your Model

you have not yet done so, see “Defining Tunable Parameters in the MATLAB
Workspace” on page 4-6.

This topic assumes that you are familiar with the tunable parameter
properties on the Global (tunable) parameters pane. See Setting Tunable
Parameter Properties in the Simulink® Coder™ documentation for further
details.

This topic uses code generated with CoDeSys Version 2.3.

1 In the model, right-click SimpleSubsystem and select PLC Code
Generation > Options.

2 Navigate to Optimization > Signals and Parameters.

3 In the Simulation and code generation section, select the Inline
parameters check box. (This check box is cleared by default.)

The Configure button is enabled.

4 Click Configure.

The Model Parameter Configuration dialog box is displayed.

4-9

http://www.mathworks.com/access/helpdesk/help/toolbox/rtw/ug/f1040679.html
http://www.mathworks.com/access/helpdesk/help/toolbox/rtw/ug/f1040679.html

4 Working with Tunable Parameters in the Simulink® PLC Coder™ Environment

5 From Source list, select Referenced workspace variables.

6 Use the Ctrl key to select all the parameters and click Add to table >> to
add them to the Global (tunable) parameters table.

4-10

Configuring Tunable Parameters for Your Model

By default, this dialog box sets all parameters to the SimulinkGlobal
(Auto) storage class. This setting generates code with the tunable
parameters set at the local level. In this case, these parameters appear at
the function block level in each function block that uses the parameter.

You can also optionally set the storage type qualifier for a parameter to
const.

7 Click Apply and OK.

8 In the Configuration Parameters dialog box, navigate to PLC Code
Generation > General options.

9 Check the Target IDE and Output Directory settings, then click
Generate code.

10 Observe that the VAR section of Function Block SimpleSubsystem defines
K1, K2, and K3.

4-11

4 Working with Tunable Parameters in the Simulink® PLC Coder™ Environment

11 To configure a parameter to be a global variable in the generated code, set
the parameter storage class of K2 to ExportedGlobal. Leave the storage
type qualifier unset.

Some target IDEs, such as the Rockwell Automation RSLogix 5000 IDE, do
not support the access of global variables. In this case, the Simulink PLC
Coder software uses SimulinkGlobal as the automatic storage class.

To configure a parameter to be a global constant in the generated code, set
the parameter storage class of K3 to ExportedGlobal. Set storage type
qualifier to const.

12 Click Apply and OK, then rebuild the code.

13 Observe that K2 is now in the VAR_GLOBAL section. K3 is in the
VAR_GLOBAL_CONSTANT section.

4-12

Configuring Tunable Parameters for Your Model

14 To configure a parameter so that you or somebody else can provide it
through external structured text, set the parameter storage class of K1 to
ImportedExtern. The coder does not generate a variable declaration for
the parameter in the code. Leave the storage type qualifier unset.

15 Click Apply and OK, then rebuild the code.

16 Observe that K1 no longer appears in the VAR section of the generated
code. (Compare to Step 10.)

Note The Simulink PLC Coder software does not support the setting of
the parameter storage class to ImportedExternPointer. If you set the
parameter to this value, the software treats it the same as ImportedExtern.

Tunable Parameters Considerations
When tuning parameters, the coder does not support:

• Specifying parameters using Simulink.Parameter object. Use global
tunable parameters instead.

• Tuning parameters of bus data type.

4-13

4 Working with Tunable Parameters in the Simulink® PLC Coder™ Environment

4-14

5

Controlling Generated Code
Partitions

5 Controlling Generated Code Partitions

Function Block Partitions

In this section...

“About Function Block Partitions” on page 5-2

“Example: One Function Block for Atomic Subsystems” on page 5-2

“Example: One Function Block for Virtual Subsystems” on page 5-3

“Example: Multiple Function Blocks for Nonvirtual Subsystems” on page
5-4

“Controlling Generated Code Using Subsystem Block Parameters” on page
5-5

About Function Block Partitions
The Simulink PLC Coder software converts subsystems to function block
units, one subsystem per function block. You control generated code
partitioning by the number and types of Subsystem blocks that you have in
your model. The coder generates structured text function blocks as follows:

• Generates one function block for an atomic subsystem that contains no
other subsystems.

• Generates one function block for an atomic subsystem that contains only
virtual subsystems. For virtual subsystems, the Simulink PLC Coder
software generates code that is indistinguishable from the rest of the
contents of the atomic subsystem. It generates code that is flattened.

• Generates a function block for each nonvirtual subsystem contained in
an atomic subsystem. Nonvirtual subsystems can be atomic, fcn-call,
or enabled. You can customize this partitioning with the Function
packaging parameter of the Subsystem block.

These topics use code generated with CoDeSys Version 2.3.

Example: One Function Block for Atomic Subsystems
The code for the plcdemo_simple_subsystem demo is an example of
generating code with one function block. The atomic subsystem for which you
generate code does not contain any other subsystems.

5-2

Function Block Partitions

Example: One Function Block for Virtual Subsystems
The plcdemo_hierarchical_virtual_subsystem demo contains an atomic
subsystem that has two virtual subsystems, S1 and S2, inlined. A virtual
subsystem does not have the Treat as atomic unit parameter selected.
When you generate code for the hierarchical subsystem, the code contains
only the FUNCTION_BLOCK HierarchicalSubsystem component. There are no
additional function blocks for the S1 and S2 subsystems.

5-3

5 Controlling Generated Code Partitions

Example: Multiple Function Blocks for Nonvirtual
Subsystems
The plcdemo_hierarchical_subsystem demo contains an atomic subsystem
that has two nonvirtual subsystems, S1 and S2. Virtual subsystems have
the Treat as atomic unit parameter selected. When you generate code
for the hierarchical subsystem, that code contains the FUNCTION_BLOCK
HierarchicalSubsystem, FUNCTION_BLOCK HierarchicalSubsystem_S1,
and FUNCTION_BLOCK HierarchicalSubsystem_S2 components.

5-4

Function Block Partitions

 �����
��'�
����
	�.��	�	���������������

 �����
��'�
����
	�.��	�	��������/

 �����
��'�
����
	�.��	�	��������0

Controlling Generated Code Using Subsystem Block
Parameters
You can partition generated code using the following Subsystem block
parameters on the Code Generation tab. See the Subsystem block
documentation for details.

• Function packaging

• Function name options

Leave the File name options set to the default, Auto.

5-5

5 Controlling Generated Code Partitions

Generating Separate Partitions and Inlining Subsystem Code
Use the Function packaging parameter to specify the code format to
generate for an atomic (nonvirtual) subsystem. The Simulink PLC Coder
software interprets this parameter depending on the setting that you choose:

Setting Coder Interpretation

Auto Uses the optimal format based on
the type and number of subsystem
instances in the model.

Reusable function, Function Generates a function with arguments
that allows the subsystem code to be
shared by other instances of it in the
model.

Inline Inlines the subsystem
unconditionally.

For example, in the plcdemo_hierarchical_virtual_subsystem, you can:

• Inline the S1 subsystem code by setting Function packaging to Inline.
This setting creates one function block for the parent with the S1 subsystem
inlined.

• Create a function block for the S2 subsystem by setting Function
packaging to Reusable function, Auto, or Function. This setting creates
two function blocks, one for the parent, one for S2.

5-6

Function Block Partitions

Changing the Name of a Subsystem
You can use the Function name options parameter to change the
name of a subsystem from the one on the block label. When the
Simulink PLC Coder generates software, it uses the string you specify
for this parameter as the subsystem name. For example, in the
plcdemo_hierarchical_virtual_subsystem demo:

1 Open the S1 subsystem block parameter dialog box.

2 Click the Code Generation tab.

3 Set Function packaging to Function.

4 Set Function name options to User specified.

5 In the Function name field, specify a custom name. For example, type
my_own_subsystem.

5-7

5 Controlling Generated Code Partitions

6 Save the new settings.

7 Generate code for the parent subsystem.

8 Observe the renamed function block.

5-8

6

IDE-Specific Considerations

• “Introduction” on page 6-2

• “Considerations for All Target IDEs” on page 6-3

• “Rockwell Automation RSLogix Considerations” on page 6-4

• “Siemens SIMATIC STEP 7 Considerations” on page 6-6

6 IDE-Specific Considerations

Introduction
This chapter describes IDE-specific considerations you should be aware of
when generating and downloading code.

6-2

Considerations for All Target IDEs

Considerations for All Target IDEs
The coder converts matrix data types to single-dimensional vectors
(column-major) in the generated structured text.

6-3

6 IDE-Specific Considerations

Rockwell Automation RSLogix Considerations
This topic describes the considerations to remember for this target IDE
platform.

Add-On Instruction and Function Blocks
The structured text concept of function block exists for Rockwell Automation
RSLogix target IDEs as an Add-On instruction (AOI). The Simulink PLC
Coder software generates AOIs for this target, not FUNCTION_BLOCK.

Double-Precision Data Types
The Rockwell Automation RSLogix target IDE does not support
double-precision data types. At code generation, the Simulink PLC Coder
converts this data type to single-precision data types in generated code.

Note Design your model to use single-precision data type (single) as much
as possible instead of double-precision data type (double). If you must use
doubles in your model, note that the numerical results produced by the
generated structured text might differ from Simulink results. This difference
is due to double-single conversion in the generated code.

Unsigned Integer Data Types
The Rockwell Automation RSLogix target IDE does not support unsigned
integer data types. At code generation, the Simulink PLC Coder converts this
data type to signed integer data types in generated code.

Note Design your model to use signed integer data types (int8, int16, int32)
as much as possible instead of unsigned integer data types (uint8, uint16,
uint32). Doing so avoids overflow issues that unsigned-to-signed integer
conversions can cause in the generated code.

6-4

Rockwell Automation® RSLogix™ Considerations

Unsigned Fixed-Point Data Types
In the generated code, Simulink PLC Coder converts fixed-point data types to
target IDE integer data types. Because the Rockwell Automation RSLogix
target IDE does not support unsigned integer data types, do not use unsigned
fixed-point data types in the model. See “Fixed-Point Data Type Limitations”
on page 7-3 for coder limitations for fixed-point data type support.

Enumerated Data Types
The Rockwell Automation RSLogix target IDE does not support enumerated
data types. At code generation, the Simulink PLC Coder converts this data
type to 32–bit signed integer data type in generated code.

6-5

6 IDE-Specific Considerations

Siemens SIMATIC STEP 7 Considerations
This topic describes the considerations to remember for this target IDE
platform.

Double-Precision Floating-Point Data Types
The Siemens SIMATIC STEP 7 target IDE does not support double-precision
floating-point data types. At code generation, the Simulink PLC Coder
converts this data type to single-precision real data types in generated code.

Note Design your model to use single-precision floating-point data type
(single) as much as possible instead of double-precision floating-point data
type (double). If you must use double-precision floating-point data types in
your model, the numerical results produced by the generated structured text
might differ from Simulink results. Design your model so that the possible
precision loss of numerical results of the generated code does not affect the
expected semantics of the model.

int8 and Unsigned Integer Types
The Siemens SIMATIC STEP 7 SCL language does not support int8 and
unsigned integer data types. At code generation, the Simulink PLC Coder
converts int8 and unsigned integer data types to int16 or int32 in generated
code.

Note Design your model to use int16 and int32 data types as much as
possible instead of int8 or unsigned integer data types. If you must use
int8 or unsigned integers, the numerical results produced by the generated
structured text might differ from Simulink results. Design your model so that
effects of integer data type conversion of the generated code do not affect
the expected semantics of the model.

Unsigned Fixed-Point Data Types
In the generated code, Simulink PLC Coder converts fixed-point data types
to target IDE integer data types. Because the Siemens SIMATIC STEP 7

6-6

Siemens® SIMATIC® STEP® 7 Considerations

target IDE does not support unsigned integer data types, do not use unsigned
fixed-point data types in the model. See “Fixed-Point Data Type Limitations”
on page 7-3 for coder limitations for fixed-point data type support.

Enumerated Data Types
The Siemens SIMATIC STEP 7 target IDE does not support enumerated data
types. At code generation, the Siemens SIMATIC STEP 7 converts this data
type to 16–bit signed integer data type in generated code.

6-7

6 IDE-Specific Considerations

6-8

7

Limitations

• “Coder Limitations” on page 7-2

• “Block Restrictions” on page 7-6

7 Limitations

Coder Limitations

In this section...

“Current Limitations” on page 7-2

“Fixed-Point Data Type Limitations” on page 7-3

“Permanent Limitations” on page 7-5

Current Limitations
The Simulink PLC Coder software does not support the following Simulink
semantics:

• Complex data types

• Model reference

• Global data store memory (DSM)

• Absolute time temporal logic in Stateflow charts

• Stateflow machine-parented data and events

• Exported graphical functions in Stateflow charts

• Limited support for math functions. The coder does not support the
following functions: tanh, cosh, sinh, atan2, rand.

• Merge block

• Multi-rate models

• Signal and state storage classes

• Limited support for lookup table blocks. The coder does not support:
number of dimensions greater than 2, cubic-spline interpolation algorithm
mode, and begin index search using a previous index mode.

• Virtual buses at the input ports of the top-level Atomic Subsystem block.

• For Each Subsystem block.

• Variable-size signals.

7-2

Coder Limitations

Fixed-Point Data Type Limitations
Simulink PLC Coder software supports the fixed-point data type. To generate
code for fixed-point data types, configure block and model parameters as
described in this topic.

Note If you do not properly configure the blocks and models, the generated
structured text might:

• Not compile.

• Compile, but return results that differ from the simulation results.

Block Parameters
Properly configure block parameters:

1 If the block in the subsystem has a Signal Attributes tab, navigate to
that tab.

2 For the Integer rounding mode parameter, select Round.

3 Clear the Saturate on integer overflow check box.

4 For the Output data type parameter, select a fixed-point data type.

5 Click the Data Type Assistant button.

6 For the Word length parameter, enter 8, 16, or 32.

7 For the Mode parameter, select Fixed point.

8 For the Scaling parameter, select Binary point.

7-3

7 Limitations

9 Click OK.

Be sure to edit the model configuration parameters (see “Model Configuration
Parameters” on page 7-4).

Model Configuration Parameters
Properly configure model configuration parameters:

1 In model Configuration Parameters dialog box, click the Hardware
Implementation node.

2 For the Device vendor parameter, select Generic.

3 For the Device type, select Custom.

4 For the Signed integer division rounds to, select Zero.

5 For the Number of bits, set char to 16.

7-4

Coder Limitations

Permanent Limitations
The structured text language has inherent restrictions. As a result, the
Simulink PLC Coder software has the following restrictions:

• The Simulink PLC Coder software supports generating code only for
atomic subsystems.

• The solver type for the Simulink model must be fixed-step and discrete.

• No blocks that require continuous time semantics. This restriction includes
continuous integrators, zero-crossing blocks, physical modeling blocks,
and so on.

• No pointer data types.

• No recursion (including recursive events).

7-5

7 Limitations

Block Restrictions

In this section...

“Simulink Block Support Exceptions” on page 7-6

“Stateflow Chart Exceptions” on page 7-6

“Reciprocal Sqrt Block” on page 7-7

Simulink Block Support Exceptions
The Simulink PLC Coder software supports the plclib blocks with the
following exceptions. Also, see Chapter 7, “Limitations” for a list of limitations
of the software.

If you get unsupported fixed-point type messages during code generation,
update the block parameter. Open the block parameter dialog box. Navigate
to the Signal Attributes and Parameter Attributes tabs. Check that the
Output data type and Parameter data type parameters are not Inherit:
Inherit via internal rule. Set these parameters to either Inherit:
Same as input or an appropriate non-fixed-point data type, such as double
or int8.

Stateflow Chart Exceptions
If you receive a message about consistency between the original subsystem
and the S-function generated from the subsystem build, and the model
contains a Stateflow chart that contains one or more Simulink functions, use
the following procedure to address the issue:

1 Open the model and double-click the Stateflow chart that causes the issue.

The chart Stateflow Editor dialog box is displayed.

2 Right-click in this dialog box.

3 In the context-sensitive menu, select Properties.

The Chart dialog box is displayed.

7-6

Block Restrictions

4 In the Chart dialog box, navigate to the States When Enabling parameter
and select Held.

5 Click Apply and OK and save the model.

Reciprocal Sqrt Block
The Simulink PLC Coder software does not support the Simulink Reciprocal
Sqrt block signedSqrt and rSqrt functions.

7-7

7 Limitations

7-8

8

Functions — Alphabetical
List

plccoderdemos

Purpose Product demos

Syntax plccoderdemos

Description plccoderdemos displays the Simulink PLC Coder demos in the
MATLAB Help browser.

Examples Display demos in the MATLAB Help browser.

plccoderdemos

See Also plcopenconfigset

8-2

plccoderpref

Purpose Manage user preferences

Syntax plccoderpref
plccoderpref('plctargetide')
plccoderpref('plctargetide', preference_value)
plccoderpref('plctargetide', 'default')
plccoderpref('plctargetidepaths')
plccoderpref('plctargetidepaths','default')

Description plccoderpref displays the current set of user preferences, including
the default target IDE.

plccoderpref('plctargetide') returns the current default target
IDE. This default can be the target IDE set previously, or the factory
default. The factory default is 'codesys23'.

plccoderpref('plctargetide', preference_value) sets the default
target IDE to the one that you specify in preference_value. This
command sets the preference_value to persist as the default target
IDE for all future MATLAB sessions.

plccoderpref('plctargetide', 'default') sets the default target
IDE to the factory default target IDE ('codesys23').

plccoderpref('plctargetidepaths') returns a 1-by-1 structure of
the installation paths of all supported target IDEs.

plccoderpref('plctargetidepaths','default') sets the contents of
the 1-by-1 structure of the installation paths to the default values.

Tips Use the Simulink Configuration Parameters dialog box to change the
installation path of a target IDE (Target IDE Path).

Input
Arguments

plctargetide

String directive that specifies the default target IDE.

8-3

plccoderpref

Value Description

codesys23 3S-Smart Software Solutions
CoDeSys Version 2.3 (default)
target IDE

codesys33 3S-Smart Software Solutions
CoDeSys Version 3.3 target IDE

brautomation30 B&R Automation Studio 3.0 target
IDE

twincat211 Beckhoff TwinCAT 2.11 target IDE

multiprog50 KW-Software MULTIPROG 5.0
target IDE

pcworx60 Phoenix Contact PC WORX 6.0

rslogix5000 Rockwell Automation RSLogix
5000 Series target IDE

step7 Siemens SIMATIC STEP 7 Version
5 target IDE

plcopen PLCopen XML target IDE

generic Generic target IDE

Default: codesys23

plctargetidepaths

String that specifies the target IDE installation path. Contains a
1-by-1 structure of the installation paths of all supported target
IDEs.

codesys23: 'C:\Program Files\3S Software'

codesys33: 'C:\Program Files\3S CoDeSys'

rslogix5000: 'C:\Program Files\Rockwell Software'

brautomation30: 'C:\Program Files\BrAutomation'

multiprog50: 'C:\Program Files\KW-Software\MULTIPROG 5.0'

8-4

plccoderpref

pcworx60: 'C:\Program Files\Phoenix Contact\Software Suite 150'

step7: 'C:\Program Files\Siemens'

plcopen: ''

twincat211: 'C:\TwinCAT'

generic: ''

default

String that sets your preferences to the factory default.

Examples Return the current default target IDE.

plccoderpref('plctargetide')

Set rslogix5000 as the new default target IDE.

plccoderpref('plctargetide', 'rslogix5000')

Assume that you have previously changed the installation path of the
CoDeSys 2.3 target IDE. Return the current target IDE installation
paths.

plccoderpref('plctargetidepaths')

ans =

codesys23: 'C:\Program Files\3S Software'

codesys33: 'C:\Program Files\3S CoDeSys'

rslogix5000: 'C:\Program Files\Rockwell Software'

brautomation30: 'C:\Program Files\BrAutomation'

multiprog50: 'C:\Program Files\KW-Software\MULTIPROG 5.0'

pcworx60: 'C:\Program Files\Phoenix Contact\Software Suite 150'

step7: 'C:\Program Files\Siemens'

plcopen: ''

twincat211: 'C:\TwinCAT'

8-5

plccoderpref

generic: ''

Set the installation path of all the target IDEs, including CoDeSys 2.3,
to factory default.

» plccoderpref('plctargetidepaths','default')

ans =

codesys23: 'C:\Program Files\3S Software'

codesys33: 'C:\Program Files\3S CoDeSys'

rslogix5000: 'C:\Program Files\Rockwell Software'

brautomation30: 'C:\Program Files\BrAutomation'

multiprog50: 'C:\Program Files\KW-Software\MULTIPROG 5.0'

pcworx60: 'C:\Program Files\Phoenix Contact\Software Suite 150'

step7: 'C:\Program Files\Siemens'

plcopen: ''

twincat211: 'C:\TwinCAT'

generic: ''

8-6

plcgeneratecode

Purpose Generate structured text for subsystem

Syntax generatedfiles = plcgeneratecode(subsystem)

Description generatedfiles = plcgeneratecode(subsystem) generates
structured text for the specified atomic subsystem in a model.
subsystem is the fully qualified path name of the atomic subsystem.
generatedfiles is a cell array of the generated file names.

Examples Generate code for the subsystem,
plcdemo_simple_subsystem/SimpleSubsystem.

plcdemo_simple_subsystem

generatedfiles = plcgeneratecode('plcdemo_simple_subsystem/SimpleSubsystem')

See Also plcopenconfigset

8-7

plcopenconfigset

Purpose Open Configuration Parameters dialog box for subsystem

Syntax plcopenconfigset(subsystem)

Description plcopenconfigset(subsystem) opens the Configuration Parameters
dialog box for the specified atomic subsystem in the model. subsystem is
the fully qualified path name of the atomic subsystem.

Examples Open the Configuration Parameters dialog box for the subsystem,
plcdemo_simple_subsystem/SimpleSubsystem.

plcdemo_simple_subsystem

plcopenconfigset('plcdemo_simple_subsystem/SimpleSubsystem')

See Also plcgeneratecode

8-8

9

Configuration Parameters
for Simulink PLC Coder
Models

• “PLC Coder: General” on page 9-2

• “PLC Coder: Comments” on page 9-10

• “PLC Coder: Symbols” on page 9-14

9 Configuration Parameters for Simulink® PLC Coder™ Models

PLC Coder: General

In this section...

“PLC Coder: General Tab Overview” on page 9-3

“Target IDE” on page 9-4

“Target IDE Path” on page 9-6

“Code Output directory ” on page 9-8

“Generate testbench for subsystem” on page 9-9

9-2

PLC Coder: General

PLC Coder: General Tab Overview
Set up general information about generating structured text code to download
to target PLC IDEs.

Configuration
To enable the Simulink PLC Coder options pane, you must:

1 Create a model.

2 Add either an Atomic Subsystem block, or a Subsystem block for which you
have selected the Treat as atomic unit check box.

3 Right-click the subsystem block and select PLC Code
Generation > Options.

Tip
In addition to configuring parameters for the Simulink PLC Coder model, you
can also use this dialog box to generate structured text code and test bench
code for the Subsystem block.

See Also
“Preparing Your Model to Generate Structured Text Code” on page 1-12

“Generating Structured Text Code from the Model Window” on page 1-21

9-3

9 Configuration Parameters for Simulink® PLC Coder™ Models

Target IDE
Select the target IDE in which to generate code.

Settings
Default: Structured Text (CoDeSys)

3S CoDeSys 2.3
Generates structured text (IEC 61131) code for 3S-Smart Software
Solutions CoDeSys Version 2.3.

3S CoDeSys 3.3
Generates structured text code in PLCopen XML for 3S-Smart Software
Solutions CoDeSys Version 3.3.

B&R Automation Studio 3.0
Generates structured text code for B&R Automation Studio 3.0.

Beckhoff TwinCAT 2.11
Generates structured text code for Beckhoff TwinCAT 2.11 software.

KW-Software MULTIPROG 5.0
Generates structured text code in PLCopen XML for KW-Software
MULTIPROG® 5.0.

Phoenix Contact PC WORX 6.0
Generates structured text code in PLCopen XML for Phoenix Contact
PC WORX 6.0.

Rockwell RSLogix 5000 17, 18
Generates structured text code for Rockwell Automation RSLogix 5000.

Siemens SIMATIC Step 7 5.4
Generates structured text code for Siemens SIMATIC STEP 7 5.4.

Generic
Generates a pure structured text file. If your desired target IDE is not
available for the Simulink PLC Coder product, consider generating and
downloading a generic structured text file.

PLCopen XML
Generates structured text code formatted using PLCopen XML
standard.

9-4

PLC Coder: General

Tip

• Separate the reserved names using commas or spaces.

Command-Line Information

Parameter: PLC_TargetIDE
Type: string
Value: 'codesys23' | 'codesys33' | 'rslogix5000' |
'brautomation30' | 'multiprog50' | 'pcworx60' | 'step7' |
'plcopen' | 'twincat211' | 'generic'
Default: 'codesys23'

See Also
“Generating Structured Text Code from the Model Window” on page 1-21

9-5

9 Configuration Parameters for Simulink® PLC Coder™ Models

Target IDE Path
Enter target IDE installation path. The listed path is the factory default
for the Target IDE entry.

Settings
Default: C:\Program Files\3S Software

C:\Program Files\3S Software
Factory default installation path for 3S-Smart Software Solutions
CoDeSys software Version 2.3.

C:\Program Files\3S CoDeSys
Factory default installation path for 3S-Smart Software Solutions
CoDeSys software Version 3.3..

C:\Program Files\BrAutomation
Factory default installation path for B&R Automation Studio 3.0
software.

C:\TwinCAT
Factory default installation path for Beckhoff TwinCAT 2.11 software.

C:\Program Files\KW-Software\MULTIPROG 5.0
Factory default installation path for KW-Software MULTIPROG 5.0
software.

C:\Program Files\Phoenix Contact\Software Suite 150
Factory default installation path for Phoenix Contact PC WORX 6.0
software.

C:\Program Files\Rockwell Software
Factory default installation path for Rockwell Automation RSLogix
5000 software.

C:\Program Files\Siemens
Factory default installation path for Siemens SIMATIC STEP 7 5.4
software.

Tip

• The value of this parameter changes when you change the Target IDE
value.

9-6

PLC Coder: General

• If you right-click the Subsystem block, the PLC Code
Generation > Generate and Import Code for Subsystem command
uses this value to import generated code.

• If your target IDE installation is standard, do not edit this parameter.
Leave it as the default value.

• If your target IDE installation is nonstandard, edit this value to specify
the actual installation path.

• If you change the path and click Apply, the changed path remains in effect
for that target IDE for other models and between MATLAB sessions. To
reinstate the factory default, use the command:

plccoderpref('plctargetidepaths','default')

Command-Line Information
See plccoderpref.

See Also
“Automatically Importing Structured Text Code” on page 1-31

9-7

9 Configuration Parameters for Simulink® PLC Coder™ Models

Code Output directory
Enter a path to the target folder into which code is generated.

Settings
Default: plcsrc subfolder in your working folder

Command-Line Information

Parameter: PLC_OutputDir
Type: string
Value: './plcsrc'
Default: './plcsrc'

See Also
“Generating Structured Text Code from the Model Window” on page 1-21

9-8

PLC Coder: General

Generate testbench for subsystem
Specify the generation of test bench code for the subsystem.

Settings

Default: off

On
Enables generation of test bench code for subsystem.

Disables generation of test bench code for subsystems.

Tips
If you right-click the Subsystem block and choose PLC Code
Generation > Generate and Import Code for Subsystem, the software
also generates the test bench for the subsystem, regardless of the setting of
the Generate testbench for subsystem check box.

Command-Line Information

Parameter: PLC_GenerateTestbench
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
“Generating Structured Text Code from the Model Window” on page 1-21

9-9

9 Configuration Parameters for Simulink® PLC Coder™ Models

PLC Coder: Comments

In this section...

“Comments Overview” on page 9-11

“Include comments” on page 9-11

“Simulink block / Stateflow object comments ” on page 9-12

“Show eliminated blocks” on page 9-13

9-10

PLC Coder: Comments

Comments Overview
Control the comments that the Simulink PLC Coder software automatically
creates and inserts into the generated code.

See Also
“Generating Structured Text Code from the Model Window” on page 1-21

Include comments
Specify which comments are in generated files.

Settings
Default: on

On
Places comments in the generated files based on the selections in the
Auto generated comments pane.

Off
Omits comments from the generated files.

Command-Line Information

Parameter: PLC_RTWGenerateComments
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also
“Generating Structured Text Code from the Model Window” on page 1-21

9-11

9 Configuration Parameters for Simulink® PLC Coder™ Models

Simulink block / Stateflow object comments
Specify whether to insert Simulink block and Stateflow object comments.

Settings
Default: on

On
Inserts automatically generated comments that describe block code and
objects. The comments precede that code in the generated file.

Off
Suppresses comments.

Command-Line Information

Parameter: PLC_RTWSimulinkBlockComments
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also
“Generating Structured Text Code from the Model Window” on page 1-21

9-12

PLC Coder: Comments

Show eliminated blocks
Specify whether to insert eliminated block comments.

Settings
Default: off

On
Inserts statements in the generated code from blocks eliminated as the
result of optimizations (such as parameter inlining).

Off
Suppresses statements.

Command-Line Information

Parameter: PLC_RTWShowEliminatedStatement
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
“Generating Structured Text Code from the Model Window” on page 1-21

9-13

9 Configuration Parameters for Simulink® PLC Coder™ Models

PLC Coder: Symbols

In this section...

“Symbols Overview” on page 9-15

“Maximum identifier length” on page 9-16

“Use the same reserved names as Simulation Target” on page 9-17

“Reserved names” on page 9-18

9-14

PLC Coder: Symbols

Symbols Overview
Select the automatically generated identifier naming rules.

See Also
“Generating Structured Text Code from the Model Window” on page 1-21

9-15

9 Configuration Parameters for Simulink® PLC Coder™ Models

Maximum identifier length
Specify the maximum number of characters in generated function, type
definition, and variable names.

Settings
Default: 31

Minimum: 31

Maximum: 256

You can use this parameter to limit the number of characters in function, type
definition, and variable names. Many target IDEs have their own restrictions.
The Simulink PLC Coder software complies with target IDE limitations.

Command-Line Information

Parameter: PLC_RTWMaxIdLength
Type: int
Value: 31 to 256
Default: 31

See Also
“Generating Structured Text Code from the Model Window” on page 1-21

9-16

PLC Coder: Symbols

Use the same reserved names as Simulation Target
Specify whether to use the same reserved names as those specified in the
Simulation Target > Symbols pane.

Settings
Default: off

On
Enables using the same reserved names as those specified in the
Simulation Target > Symbols pane pane.

Off
Disables using the same reserved names as those specified in the
Simulation Target > Symbols pane pane.

Command-Line Information

Parameter: PLC_RTWUseSimReservedNames
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
“Generating Structured Text Code from the Model Window” on page 1-21

9-17

9 Configuration Parameters for Simulink® PLC Coder™ Models

Reserved names
Enter the names of variables or functions in the generated code that you do
not want to be used.

Settings
Default: ()

This action changes the names of variables or functions in the generated
code to avoid name conflicts with identifiers in custom code. Reserved names
must be shorter than 256 characters.

Tips

• Start each reserved name with a letter or an underscore.

• Each reserved name must contain only letters, numbers, or underscores.

• Separate the reserved names using commas or spaces.

Command-Line Information

Parameter: PLC_RTWReservedNames
Type: string
Value: string
Default: ''

See Also
“Generating Structured Text Code from the Model Window” on page 1-21

9-18

Index

A
accessing demos 1-5
accessing supported blocks 1-6
atomic subsystems 1-12

B
B&R Automation Studio® 1-7

accessing 1-9
basic workflow 1-11
Beckhoff® TwinCAT® 1-7

accessing 1-9
before you start 1-12
block parameters 5-5

C
changing name of a subsystem 5-7
Code generation

development process 1-3
CoDeSys 1-7

downloading 1-8
compatibility 1-17
configuration parameters

pane 9-3 9-11 9-15
Include comments 9-11
Maximum identifier length: 9-16
Output directory 9-8 to 9-9
Reserved names: 9-18
Show eliminated blocks 9-13
Simulink block / Stateflow object

comments 9-12
Target IDE 9-4
Target IDE Path 9-6
Use the same reserved names as

Simulation Target 9-17
PLC Coder: General 9-2
reference 9-1

configuring parameters to be tunable 4-8
configuring Simulink® models 1-12

configuring tunable parameters 4-2

D
defining tunable parameters in the MATLAB®

workspace 4-6

E
ensuring compatibility 1-17
expected background 1-4
expected users 1-4

F
function block 1-4

generating multiple for nonvirtual
subsystems 5-4

generating one for atomic subsystems 5-2
generating one for virtual subsystems 5-3
partitions 5-2

functions
plccoderdemos 8-2
plccoderpref 8-3
plcgeneratecode 8-7
plcopenconfigset 8-8

G
generated code

controlling with block parameters 5-5
mapping MATLAB® Coder™ subsystems to

function blocks 2-10
mapping reusable code to function blocks 2-4
mapping Stateflow® enabled and triggered

subsystems to function blocks 2-6
mapping Stateflow® subsystems to function

blocks 2-8
mapping to function blocks 2-2
partitioning 5-1

Index-1

Index

generating and examining structured text
code 1-21

generating and importing structured text 3-4
generating code 1-21

MATLAB® interface 1-28
generating separate partitions and inlining

subsystem code 5-6
generating structured text code 1-21
generating test bench code 3-1
glossary 1-4

I
IDE platforms

supported 1-7
identifying tunable parameters 4-3
IEC 61131-3 1-4

K
KW-Software MULTIPROG®

accessing 1-9

L
limitations 7-1

M
mapping Simulink® semantics 2-1
MATLAB Coder 1-2

N
nonvirtual subsystems 5-4

O
overview 1-2

P
partitioning

controlling generated code with subsystem
block parameters 5-5

generated code 5-1
multiple function block for nonvirtual

subsystems 5-4
one function block for atomic subsystems 5-2
one function block for virtual subsystems 5-3

platforms 1-7
PLC Coder: General

configuration parameters 9-2
plccoderdemos function 8-2
plccoderpref function 8-3
plcgeneratecode 1-28
plcgeneratecode function 8-7
PLCopen 1-4
plcopenconfigset 1-28
plcopenconfigset function 8-8

R
related products 1-6
requirements 1-6
Rockwell Automation® RSLogix™ 1-7

accessing 1-9
considerations 6-4
double-precision data types 6-4
enumerated integer data types 6-5
unsigned fixed-point data types 6-5
unsigned integer data types 6-4

S
Siemens® SIMATIC® STEP® 7

accessing 1-10
considerations 6-6
double-precision floating-point data

types 6-6
enumerated integer data types 6-7

Index-2

Index

int8 and unsigned integer data types 6-6
Siemens®SIMATIC®STEP® 7

unsigned fixed-point data types 6-6
Simulink 1-2
Simulink PLC Coder

product overview 1-2
Simulink® PLC Coder™

limitations 7-1
Simulink®

semantics 2-1
Stateflow 1-2
structured text 1-4
subsystem block parameters 5-5
subsystems

atomic 1-12
supported blocks

accessing 1-6
MATLAB Coder 1-2
Simulink 1-2
Stateflow 1-2

supported IDE platforms 1-7
system requirements 1-7

T
target platforms 1-7
test bench code

generating 3-1
Treat as atomic unit 1-12
tunable parameters

about 4-2
configuring 4-2
identifying 4-3
MATLAB® workspace 4-6

U
useful terms 1-4

V
virtual subsystems 5-3

W
working with generated structured text 3-2

Index-3

	toc
	Getting Started
	Product Overview
	Introduction
	PLC Code Generation in the Development Process
	Expected Users
	Glossary
	Expected Background
	Accessing Demos

	Related Products
	Requirements for the Simulink PLC Coder Product
	Supported Simulink and Stateflow Blocks
	System Requirements
	Supported IDE Platforms
	3S-Smart Software Solutions CoDeSys Software
	B&R Automation Studio 3.0 Software
	Beckhoff TwinCAT 2.11
	KW-Software MULTIPROG 5.0
	Phoenix Contact PC WORX Version 6.0
	Rockwell Automation RSLogix 5000 Software
	Siemens SIMATIC STEP 7

	Basic Workflow
	Preparing Your Model to Generate Structured Text Code
	Configuring Simulink Models for Structured Text Code Generation
	Ensuring System Compatibility for Structured Text Code Generatio

	Generating and Examining Structured Text Code
	Generating Structured Text Code from the Model Window
	Specifying Custom Names for Generated Files

	Generating Structured Text Code with the MATLAB Interface
	Generating Structured Text Code and Integrating with Existing Si

	Automatically Importing Structured Text Code
	PLC IDEs That Qualify for Importing Code Automatically
	Generating and Automatically Importing Structured Text Code
	Troubleshooting Automatic Import Issues
	Supported Target IDEs
	Unsupported Target IDEs
	Possible Automatic Import Issues

	Mapping Simulink Semantics to Structured Text
	How Simple Subsystem Code Maps to Function Blocks
	How Reusable Subsystem Code Maps to Function Blocks
	How Triggered Subsystem Code Maps to Function Blocks
	How Stateflow Subsystem Code Maps to Function Blocks
	How MATLAB Coder Subsystem Code Maps to Function Blocks
	How Alias Data Types Map in Generated Code

	Generating Test Bench Code
	Working with Generated Structured Text
	How Test Bench Verification Works
	Generated Files
	Integrating Generated Code into Custom Code

	Generate and Manually Import Test Bench Code
	Automatically Importing Structured Text Code
	PLC IDEs that Qualify for Importing Code Automatically
	Automatically Importing to KW-Software MULTIPROG 5.0 and Phoenix
	Generating, Automatically Importing, and Verifying Structured Te

	Working with Tunable Parameters in the Simulink PLC Coder Enviro
	Configuring Tunable Parameters for Your Model
	About Tunable Parameters in the Simulink PLC Coder Environment
	Workflow Overview
	Identifying Tunable Parameters
	Defining Tunable Parameters in the MATLAB Workspace
	Configuring Parameters to Be Tunable
	Tunable Parameters Considerations

	Controlling Generated Code Partitions
	Function Block Partitions
	About Function Block Partitions
	Example: One Function Block for Atomic Subsystems
	Example: One Function Block for Virtual Subsystems
	Example: Multiple Function Blocks for Nonvirtual Subsystems
	Controlling Generated Code Using Subsystem Block Parameters
	Generating Separate Partitions and Inlining Subsystem Code
	Changing the Name of a Subsystem

	IDE-Specific Considerations
	Introduction
	Considerations for All Target IDEs
	Rockwell Automation RSLogix Considerations
	 Add-On Instruction and Function Blocks
	Double-Precision Data Types
	Unsigned Integer Data Types
	Unsigned Fixed-Point Data Types
	Enumerated Data Types

	Siemens SIMATIC STEP 7 Considerations
	Double-Precision Floating-Point Data Types
	int8 and Unsigned Integer Types
	Unsigned Fixed-Point Data Types
	Enumerated Data Types

	Limitations
	Coder Limitations
	Current Limitations
	Fixed-Point Data Type Limitations
	Block Parameters
	Model Configuration Parameters

	Permanent Limitations

	Block Restrictions
	Simulink Block Support Exceptions
	Stateflow Chart Exceptions
	Reciprocal Sqrt Block

	Functions — Alphabetical List
	Configuration Parameters for Simulink PLC Coder Models
	PLC Coder: General
	PLC Coder: General Tab Overview
	Configuration
	Tip
	See Also

	Target IDE
	Settings
	Tip
	Command-Line Information
	See Also

	Target IDE Path
	Settings
	Tip
	Command-Line Information
	See Also

	Code Output directory
	Settings
	Command-Line Information
	See Also

	Generate testbench for subsystem
	Settings
	Tips
	Command-Line Information
	See Also

	PLC Coder: Comments
	Comments Overview
	See Also

	Include comments
	Settings
	Command-Line Information
	See Also

	Simulink block / Stateflow object comments
	Settings
	Command-Line Information
	See Also

	Show eliminated blocks
	Settings
	Command-Line Information
	See Also

	PLC Coder: Symbols
	Symbols Overview
	See Also

	Maximum identifier length
	Settings
	Command-Line Information
	See Also

	Use the same reserved names as Simulation Target
	Settings
	Command-Line Information
	See Also

	Reserved names
	Settings
	Tips
	Command-Line Information
	See Also

